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A B S T R A C T

A medical examination at Nuclear Medicine Department (NMD) carries out at multiple stages. Patients are
accompanied and guided by nurses during their movements within the NMD to avoid them entering into
any hazardous situation. However, even accompanying nurses could be exposed to harmful radiation, which
puts their safety at risk. Artificial Intelligence (AI) technologies can address these issues by supporting
these processes avoiding risky situations, and preventing patients’ and clinicians’ safe. This article presents
an artificial intelligence-based architecture for risk management during the nuclear medical examination
to automatically guide the patients during the medical examination and support injury prevention. The
architecture comprises two main components; the first component integrates Deep Learning (DL) techniques
and WiFi tools to monitor and verify the patient’s position continuously; the second integrates Reinforcement
Learning (RL) techniques to guide the patient during his/her examination. Experimental results show the
suitability of the proposed architecture. Therefore the proposed risk management system can support the
prevention of risks and injuries during medical examination and reduce operational costs.
1. Introduction

Risk management in healthcare has been focused mainly on loss pre-
vention, and patient safety (Di Sarno, Formicola, Sicuranza, & Paragli-
ola, 2013; Kuhn & Youngberg, 2002). Solving the patient safety prob-
lem avoids the unnecessary effective incidents that many patients face
during their interaction with healthcare services (Naeem & Coronato,
2022), including the nuclear medical examination. It is a fact that
interventions to minimize risks during a nuclear medical examination
will positively impact patient satisfaction. According to the Centers for
Medicare and Medicaid Services (CMS), the primary objective should be
to reduce risks during healthcare services and improve patient’s quality
of life (VanLare & Conway, 2012).

The healthcare systems can produce adverse events like any other
complex system if not controlled (Vincent, 2011). An adverse event
is, by definition, an event in the form of a complication resulting
in disability or unintended injury, prolonged hospital stay, or death
caused by healthcare management instead of the patient’s underlying
disease process (Baker et al., 2004). An intrinsic aspect of clinical
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care is that, whenever it is provided, patients risk suffering from a
disease as an unintended consequence of medical examination (Thomas
et al., 2000). Therefore, the probability of errors and adverse events, in
general, cannot be ignored in healthcare systems like nuclear medicine.
However, the risk of adverse events can be minimized by employing AI
based risk management systems.

A nuclear medicine examination process consists of many compo-
nents. A patient seeking examination may have to pass through many
rooms, for example, the acceptance room, waiting room, injection
room, hot waiting room, etc. Some of the rooms inside the building
are useful, while others may be harmful or undesirable. Such medical
examination systems benefit humans if they pass through the system
in minimum time without facing any dangerous situations. A person
going through the examination process may mistakenly enter the wrong
room, resulting in an adverse event.

In most healthcare practices, nurses accompany patients when mov-
ing within the department with the view to avoid the patients from
making mistakes during the examinations. However, such a scenario
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Fig. 1. The reinforcement learning problem.

defines a situation in which both the patient’s and nurses’ safe are at
risk, demanding an efficient risk management system to reduce the time
duration of the medical examination as much as possible. Achieving the
temporal shortest medical examination would improve the safety of all
subjects, such as patients and nurses. To do that, optimizing the leading
of the patients’ across the nuclear medicine examination process is
essential. The motivations of this work are stated in this objective.

The work focuses on developing a risk management system that
can assist a person in examining a nuclear medicine department. The
proposed approach has a tracker (consisting of a WiFi module and
DL) to track the position of a person inside the nuclear medicine
department and a RL based controller that guides the person during
the examination process inside the building to help them in avoiding
harmful events. We have defined a two-step verification mechanism to
identify a person’s current position. Based on the tracked position, the
RL controller guides the patient to the final step through the safest path.
In this way, nurses will no longer be necessary for the surveillance of
patients within the department. This will have two benefits: lower costs
and fewer people exposed to radiation.

The main contribution of the paper concern the definition of in-
telligent step-by-step workflow for risk prevention of nuclear medicine
examination processes, where intelligent means the integration of two
different learning approaches (RL and DL), and step-by-step means
that the approach models each step of the medical process in ac-
cordance with the patient’s actions. These two properties make a
strong difference compared to the state-of-the-art since they are not
concurrently addressed in other works. The proposed workflow does
not need any additional infrastructure for the operation since it can
adopt the available capabilities of smartphones and personal devices
and assist a patient during his/her medical examination. The goodness
of the proposed work has been brought to light from an analysis of the
experimental results.

The rest of the paper is organized as follows: Related work is
described in Section 2 with a discussion on literature. We will discuss
a case scenario in Section 3. Section 4 comprises a quick review of
background and problem formulation, where introductory concepts
about the RL and DL are presented. Then a detailed introduction to
system including the major components (Tracker and Controller) is
given in Section 5. The discussion about the experiments, dataset and
results is reported in Section 6. We summarize the paper in Section 7.

2. Related work

The recent biomedical and technological innovations have led the
healthcare sector to implement clinical governance to provide the best
quality of healthcare facilities in an increasingly complex environ-
ment. Risk management is one of the most relevant aspects of clinical
2

governance, and techniques proposed in the literature highlight the
importance of developing such systems (Cagliano, Grimaldi, & Rafele,
2011). The reference standard currently used by manufacturers for risk
management is ISO 14971. This standard was designed for traditional
medical devices and does not either define a formal methodology to
conduct a risk assessment or consider the peculiarities of current med-
ical information architectures (Coronato & Cuzzocrea, 2020). More-
over, the techniques implemented currently by manufacturers normally
target to find qualitative Risk Assessment results.

A system for risk transition management in e-Healthcare services is
proposed in Wiboonrat (2011). The proposed model is discussed using
many cases of healthcare services transition projects in Thailand to
develop and manage transition plans. Risk management is deployed
during the transition process to reduce project failure. The work pre-
sented in Ham, Hwang, Kim, and Lee (2009) carried out a questionnaire
and concluded the need for effective patient risk management in a
nuclear medicine department. The results of the study showed that it is
possible to minimize safety accidents during the examination process.

A qualitative study of two embedded cases was done in two sections
of a hospital’s nuclear medicine department to understand clinicians’
relationship to the risks of exposure to low doses and their procedure to
combine the logic of patient care/cure concerning self-protection (Lon-
ceint, Bodéré, & Geffroy, 2019). The study includes 23 interviews and
ten weeks of observations with several health professionals in the de-
partment. The study shows the coexistence of care/cure and radiation
protection logic to be a source of contradictions for professionals in a
nuclear medicine department.

A deep RL technique for fall risk reduction using mobile assistant
robots is proposed in Namba and Yamada (2018). The authors have
collected data regarding past incidents and then used it as the input
data to analyze fall risks and to assess the examples of risk reduction
measures. A Q-learning-based methodology is employed in Paragliola,
Coronato, Naeem, and De Pietro (2018) and Paragliola and Naeem
(2019) to assist customers in a nuclear medicine department. However,
it was assumed that the patient is equipped with short-range Radio
Frequency Identification (RFID) readers, and the position of the patient
(state) was emulated.

A multi-agent RL risk management system for distributed agile
software projects is designed in Adel, Harb, and Elshenawy (2021).
The system is implemented to use a dynamic policy. The model is
applied as an experiment to definite numbers for a set of risk factors,
for example, software development life cycle risk, project management
risk, communication, and coordination risk.

In Liu, Hu, and Lin (2021), authors applied data mining techniques
on a hospital’s electronic medical records database comprising a nurs-
ing information system to construct inpatient-fall-prediction models
for use during various stages of inpatient care. An adaptive differen-
tial evolution scheme for resource allocation by utilizing generalized
opposition-based learning and belief space is proposed in Deng, Ni, Liu,
Chen, and Zhao (2022).

The cited works provide an overview of the application of tradi-
tional machine-learning-based approaches to support clinical assistance
in e-Health locations. However, it is possible highlighting a few issues:

– None of the papers aimed to directly interact with the subject
since the models are built to support only the clinical decision
process.

– All the related works concern the lack of a verification step
confirming the correctness of the patient’s activities during the
examination

– None of the papers propose solutions based on the combination of
different learning approaches since most papers adopt machine-
learning-based techniques without combining them with other
models.
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Fig. 2. Workflow of proposed risk management system.
The proposed paper addresses all the previous issues by defining
a step-by-step verification process that identifies the current position
of a subject and using RL-based controller to guide a subject during
his/her examination process inside a nuclear medicine department to
help him/her avoid harmful events. In detail, the novel contributions
of the paper are:

– the definition of an RL-based recommendation system that di-
rectly suggests to the patient his/her next move following the
current state of his/her medication and current position in the
nuclear department.

– the definition of a DL-based model to verify the correct proceed-
ing of the examination in order to guarantee that the patient
correctly follows the RL-based recommendation system

- the definition of a hybrid approach based on the combination
of both RL and DL techniques to define the tracking task, the
recommendation task, and the verification task.

Our system defines a step verification process that identifies the current
position and a RL based controller based on the tracker’s input, guiding
the person during the examination process inside the building to help
them avoid harmful events.

3. Use case scenario

An overview of the nuclear medicine department can be visualized
inside the red boundary of Fig. 2. We consider a nuclear medicine
building that is consist of different locations as described below:
– A Reception Room (RR) where the patients are admitted into the
department;
– A Waiting Room (WR) is a place where the patients wait for the
injection of a radio-pharmaceutical;
– An Injection Room (IR) where the patients are injected with the
required substance;
– A Hot Waiting Room (HWR) where the patients have to wait for
the examination until the radiation level reaches the target range after
having been injected;
3

– A Diagnostic Room (DR) where the examinations are performed. The
patient is equipped with a smartphone (tracker) so that the system may
track him/her. For the successful completion of the medical expatria-
tion, the patient has to follow this path: 𝑅𝑅 → 𝑊𝑅 → 𝐼𝑅 → 𝐻𝑊𝑅 →
𝐷𝑅.

The goal is to automatize the complete examination process, where
the automatize indicates that hospital staff is not responsible for moni-
toring patients inside the department. This scenario exposes the patient
to radioactive agents and may cause severe injury. If a patient does
not follow the correct sequence, they enter a hazardous situation, as
shown in Fig. 3. Moreover, Coronato and Pietro (2010) focuses on
a real case example, which consists of a pervasive application for
the department of nuclear medicine. The description of each state
representing a particular situation is given in Table 1.

For example, the state 𝑠4 indicates the situation when a patient goes
in and out of HWR without being injected, and correspondingly two
directions (actions) are available such as (1). the patient is in the HWR
without injection and he may move to WR; (2). The patient may move
to an undesired location (risk state). The controller part of the proposed
system learns all these dynamics and can eventually guide a patient
through the examination process.

According to what clinicians have reported in the description of the
workflow, the patient receives the substance by injection and he/she
gets a certain degree of radiation. However, even people who stand
close to the radioactive substance before the injection receive a little
amount of radiation. For this reason, clinical staff is equipped with a
sensor that measures the level of radiation in the air and is supposed
to stay within the injection room for a predetermined maximum time
slot.

Definitively, entering by mistake the injection room may cause
the retirement of some radiation, which would be preferred to be
avoided even if of very small quantity and thus with limited risk. We
have developed an intelligent Risk Management System (RMS) that
consists of RL and DL agents to minimize the risk of patients entering
into dangerous situations during their medical examination. The RMS
receives the patient’s position and according to the current position,
it provides a guidance message to the patient to safely lead him/her
through the department’s building.
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Fig. 3. Risk case scenario: States action representation of risk management environment.
Table 1
Description of states and actions.

States Description Actions Description

𝑎01 You are in Acceptance Room, Please move to waiting Room
𝑠0 Patient Admitted for medical examination

𝑎02 You are in Acceptance Room, Please move to Hot waiting Room

𝑎13 You are in waiting Room, Please move to Injection Room
𝑠1 A patient waits in WR and not injected

𝑎14 You are moving in the same waiting Room

𝑎25 BE CAREFUL !, You are moving to HWR without being injected
𝑠2 Patient waits in HWR and not injected

𝑎2𝑅 You are in a Risk State

𝑎36 You are in the injected, Please move to Hot Waiting Room
𝑎37 You are moving back to the Waiting Room, Please move to HWR𝑠3 Patient is available for injection in IR
𝑎38 Your are injected and in WR, please move to the HWR

𝑠4 A patient exits the WR but enters in the WR again 𝑎4𝐹 System does not work

𝑎51 You are in the HWR without injection, Please move to WR
𝑠5 The patient goes in and out of HWR without being injected

𝑎5𝑅 You are in a Risk State

𝑎6𝐹 System does not work
𝑎69 you are still in HWR, Please move to the diagnostic Room𝑠6 The patient waits in HWR and injected
𝑎610 You are in HWR, Please move to the diagnostic Room

𝑎7𝑅 You are in a Risk State
𝑎76 Your are Injected and in WR, please move to the HWR𝑠7 The patient waits in WR and injected
𝑎78 Be CAREFUL! Your are Injected and in WR, please move to the HWR

𝑎8𝑅 You are in a Risk State
𝑠8 The patient goes in and out of WR after being injected

𝑎86 Your are Injected and in WR, please move to the HWR

𝑎9𝑅 You are in a Risk State
𝑠9 The injected patient waits in HWR instead of moving into DR

𝑎910 Please move to the diagnostic Room for inspection

𝑠10 Patient under examination 𝑎10𝑆𝑎𝑓𝑒 You are in diagnostic room, examination process is underway

Terminal states

𝑠𝑠𝑎𝑓𝑒 A patient exits from the DR
𝑠𝐹 System Failure
𝑠𝑅 Risk Position
4. Technical background

This section provides a brief introduction to different AI tools that
have been used during experiments.

4.1. Reinforcement learning

RL is a sub-field of Machine Learning (ML) where an agent interacts
with an environment to achieve a goal, and learning takes place inter-
action after interaction. This section introduces some basic mechanisms
and terminology. A detailed presentation of RL can be found in Sutton
and Barto (2018).

In RL an Agent is an entity (algorithm/robot/player, etc.) that in-
teracts with a given environment (problem/smart space/game, etc.) by
performing actions, and receives feedback (penalty/reward) from the
4

environment after any action selected as described in Fig. 1. The reward
is the mechanism that enables the agent to understand whether the
action selected has produced a positive or a negative effect concerning
the final goal.

A policy is a strategy that indicates to the agent which action to
select in every state of the environment. The agent has to learn the
optimal policy; that is, the one that maximizes the cumulative reward
over the long run.

A RL problem is defined as a Markov Decision Process (MDP). A
MDP is a tuple (𝑆,𝐴, 𝑃𝑎, 𝑅𝑎, 𝛾), where 𝑆 is a set of states, 𝐴 is a set of
actions, 𝑃𝑎 = 𝑃𝑟(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) is the transition probability
(i.e., the probability of achieving 𝑠′ at time 𝑡 + 1, after having selected
𝑎 in 𝑠 at time 𝑡), 𝑅𝑎(𝑠, 𝑠′) is the expected reward or immediate reward
obtained when transitioning from state 𝑠 to state 𝑠′ when action 𝑎 was
taken respectively, and 𝛾 is a discount factor.
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For any state–action (𝑠, 𝑎) pair, the probability of resulted state and
the corresponding reward (𝑠′, 𝑟) is given as in Eq. (1):

𝑝(𝑠′, 𝑟|𝑠, 𝑎) ≐ 𝑃𝑟{𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎} (1)

Informally, the target of the RL agent is to maximize the reward. This
is to say, with the list of rewards R𝑡+1, R𝑡+2, … after time period 𝑡, the
goal is to maximize the reward function as given in Eq. (2):

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 +⋯ + 𝑅𝑇 (2)

where 𝑇 is the last time interval.
The return 𝐺𝑡 is the sum of discounted rewards obtained after time

t.

𝐺𝑡 =
𝑇
∑

𝑘=0
𝛾𝑘𝑅𝑡+𝑘+1 (3)

A policy 𝜋 defined in Eq. (4) tells an agent which action to take in a
given state.

𝜋(𝑎|𝑠) ≐ 𝑃 [𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠] (4)

Having the policy 𝜋 and the return 𝐺𝑡, two value functions can be
defined, i.e., state–value and the action–value functions. The state–
value function 𝑣𝜋(𝑠) is the expected return starting from a state 𝑠 and
following the policy 𝜋 as given in Eq. (5).

𝑣𝜋 (𝑠) ≐ 𝐸𝜋 [𝐺𝑡|𝑆𝑡 = 𝑠] = 𝐸𝜋 [
∞
∑

𝑘=0
𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠] (5)

The action–value function 𝑞𝜋(𝑠, 𝑎) is the expected return starting from
a state 𝑠, taking action 𝑎, by following the policy 𝜋.

The optimal value function is one that obtains the best gains in
erms of returns, as given in Eq. (6).

∗(𝑠) = max
𝜋

𝑣𝜋 (𝑠),∀𝑠 ∈ 𝑆 (6)

RL schemes are normally categorized into two major types, model-
ree, and model-based algorithms. Model-based RL algorithms need a
recise description of the dynamics of the environment in terms of the
tate-transition probability distribution. These methods (e.g., Dynamic
rogramming (DP)) compute the optimal policy by solving systems of
quations. Whereas model-free RL techniques are adopted when there is
ot a precise description of the model or its solution is too complicated.
his class of algorithms interacts directly with the environment (or with
n emulator) using Trial&Error schemes to learn the optimal policy. In
nverse RL (Shah & Coronato, 2021a, 2021b; Shah, De Pietro, Paragliola
nd Coronato, 2022), we study an agent’s objectives, values, or rewards
ith the help of employing insights into its behavior. Several methods
re available (e.g., M Monte Carlo (MC), Temporal Difference (TD),
tc.). An overview of such methods is reported in Naeem, Coronato, and
aragliola (2019), Naeem, Rizvi, and Coronato (2020) and Paragliola
t al. (2018), whereas a guideline useful to help to choose the algorithm
epending on the kind of problem is defined in Coronato, Naeem, De
ietro, and Paragliola (2020) and Shah, Coronato, Naeem and De Pietro
2022).

.2. Deep learning

DL has revolutionized many research areas with its ability to learn
etter models from huge volumes of data (Coronato, de Pietro, &
aragliola, 2013; Sarker, 2021; Zhao et al., 2022). Such technology
elies on a new generation of Artificial Neural Networks (ANNs) called
Deep Neural Networks (DNNs). Before approaching the next section,
his subsection presents a brief overview of DL techniques.

The premise is that the performance of a DNN is generally superior
o the one of a classic ANN at the cost of more excellent training time
hat, however, can be reduced by using advanced hardware (e.g., GPU)
nd/or special techniques (e.g., Transfer Learning) (Li et al., 2022;
5

athew, Amudha, & Sivakumari, 2020; Paragliola & Coronato, 2013).
he design of a DNN is crucial for success. We start this subsection by
iscussing some of the most used DL architectures.
onvolutional Neural Networks are ANNs with a much higher num-
er of layers and nodes. They are typically adopted for image classifica-
ion. A Convolutional Neural Network (CNN) needs less pre-processing
s compared to other classification schemes. Relevant filters are used
n CNNs to capture the temporal and spatial dependencies in the im-
ge (Le et al., 2015; Yamashita, Nishio, Do, & Togashi, 2018). The most
ommon CNN architectures are: ZFNet, ResNet, GoogleNet, VG-GNet,
lexNet, and LeNet (Li, Liu, Yang, Peng, & Zhou, 2021).
esnet is a short form of residual networks, and ResNet50 is a fifty-

ayer deep convolutional Neural Network (NN) that was initially intro-
uced in 2015 (He, Zhang, Ren, & Sun, 2016). It consists of five stages,
nd each stage has multiple convolution layers. This architecture gives
s 50 layers (in total) deep convolutional network. There are over 23
illion trainable parameters that the ResNet50 model has.

This framework can be used on many computer vision tasks such
s object detection, object localization (Khan, Jalil, Haq, & Shah,
021), image classification etc. ResNet50 can also be deployed to solve
on-computer vision tasks to benefit from the depth and reduce the
omputational cost.

In this article, we have applied ResNet50 architecture for image
lassification. Images from the patient’s cell phone are collected and
hen classified through a pre-trained ResNet50 model. This classifica-
ion helps us verify the patient’s current position in a nuclear medicine
epartment.

. System model

The proposed system model is shown in Fig. 2 is consist of a
iFi indoor positing system, DL, and RL learning techniques. The
iFi indoor positing system and DL model work together to track a

atient’s position. The WiFi module monitors the current position of a
erson while DL verifies that position. We considered the WiFi indoor
ositioning system as a reference. If the output of the DL does not
atch the output of the WiFi indoor positioning system then another
icture will be taken from the device that the patient is holding, it will
e classified from the DL and again the position of the patient will be
ompared with the one received from WiFi indoor positioning system
s demonstrated in Fig. 2. Once a patient’s position has been identified,
t is input to the controller (as state information to the RL algorithm).

detailed description of each component is presented next. We start
ith a detailed description of the use case scenario.

.1. Tracker

The tracker is used to locate the current position of the patient. We
mploy two-position locator methods to increase the accuracy. First, we
ind the patient’s position by using the WiFi indoor position system,
nd then in the next step, verification is done by employing the DL
ethod. Therefore, it is a two-way verification system (WiFi indoor
osition system and DL classifier).

• WiFi indoor positioning system
The WiFi indoor positioning system uses WiFi access points that
transmit certain information about the coordinates. This system
defines the patient’s current position by evaluating the router’s
MAC address and the RSSI (received signal strength indicator).
WiFi standard IEEE_802.11mc is a new advancement. It provides
a measurement protocol to calculate the distance between the
transmitter and receiver using Round Trip Time (RTT) rather
than the received signal strength indicator (RSSI). WiFi RTT
(round trip time) is a comparatively new technology with low
latency, and high accuracy (Bai, Kealy, Retscher, & Hoden, 2020).
It measures the distance between WiFi routers and a device
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Algorithm 1 SARSA algorithm for Controller
Given: Environment parameters (i.e Set of states 𝑆, set of actions𝐴).
Initialize: Learning rate 𝑙𝑟, Discount factor 𝛾, greedy selection 𝜖, No. of episodes, starting state = 𝑠0, End state = 𝑠𝑠𝑎𝑓𝑒
set: 𝑅(∶, ∶, ∶) = 0, 𝑅(𝑠, 𝑎, 𝑠𝑠𝑎𝑓𝑒) = 100, 𝑅(𝑠, 𝑎, 𝑠𝑅) = −100 and 𝑄(𝑠, 𝑎) = 0
for (𝑖 = 1; 𝑖 ≤ 𝑁𝑜. 𝑜𝑓 𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠; 𝑖++) do:

state = starting state
if (𝑛𝑝.𝑟𝑎𝑛𝑑𝑜𝑚.𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) < 𝑒𝑝𝑠𝑖𝑙𝑜𝑛) then: randomly choose action
else: action = np.argmax (Q[ state,:])
end if
while (state != End state) do:

choose next state ( state, action)
if (np.random.uniform(0, 1) < 𝑒𝑝𝑠𝑖𝑙𝑜𝑛) then: choose next action randomly
else: next action = 𝑛𝑝.𝑎𝑟𝑔𝑚𝑎𝑥(𝑄[𝑠𝑡𝑎𝑡𝑒, ∶])
end if
predict = 𝑄[𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛]
target= 𝑅(𝑠, 𝑎) + 𝛾 ∗ 𝑄[𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑥𝑡 𝑎𝑐𝑡𝑖𝑜𝑛]
𝑄[𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛]= 𝑄[𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛] + 𝑙𝑟 ∗ (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡)
state ← next state
action ← next action

end while
end for
Return: 𝑄(𝑠, 𝑎)
Table 2
Q-Table represents the Q-values of each action at each state.
Actions Values at each state

𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10 𝑠𝑠𝑎𝑓𝑒 𝑠𝐹 𝑠𝑅
𝑎01 55.37 −6.76 0.00 −4.90 0.00 0.00 25.02 −6.01 0.00 0.00 0.00 100 −100 −100
𝑎02 15.53 −0.06 0.00 −0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 −100 −100
𝑎13 0.00 66.13 0.00 0.00 0.00 0.00 0.00 7.36 0.00 0.00 0.00 100 −100 −100
𝑎14 0.00 58.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 −100 −100
𝑎25 0.00 0.00 53.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 −100 −100
𝑎2𝑅 0.00 0.00 −5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 −100 −100
𝑎36 0.00 0.00 0.00 86.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 −100 −100
𝑎37 0.00 0.00 0.00 12.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 −100 −100
𝑎38 0.00 0.00 0.00 13.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 −100 −100
𝑎43 0.00 0.00 0.00 0.00 60.74 0.00 0.00 0.00 0.00 0.00 0.00 100 −100 −100
𝑎4𝐹 0.00 0.00 0.00 0.00 −20.32 0.00 0.00 0.00 0.00 0.00 0.00 100 −100 −100
𝑎51 0.00 0.00 0.00 0.00 0.00 76.11 0.00 0.00 0.00 0.00 0.00 100 −100 −100
𝑎5𝑅 0.00 0.00 0.00 0.00 0.00 −75.09 0.00 0.00 0.00 0.00 0.00 100 −100 −100
𝑎6𝐹 0.00 0.00 0.00 0.00 0.00 0.00 −13.96 0.00 0.00 0.00 0.00 100 −100 −100
𝑎69 0.00 0.00 0.00 0.00 0.00 0.00 30.57 0.00 0.00 0.00 0.00 100 −100 −100
𝑎610 0.00 0.00 0.00 0.00 0.00 0.00 87.00 0.00 0.00 0.00 0.00 100 −100 −100
𝑎7𝑅 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −12.74 0.00 0.00 0.00 100 −100 −100
𝑎76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 47.87 0.00 0.00 0.00 100 −100 −100
𝑎78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.59 0.00 0.00 0.00 100 −100 −100
𝑎8𝑅 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −16.57 0.00 0.00 100 −100 −100
𝑎86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 65.71 0.00 0.00 100 −100 −100
𝑎9𝑅 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −17.74 0.00 100 −100 −100
𝑎910 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 73.73 0.00 100 −100 −100
𝑎10𝑆𝑎𝑓𝑒 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 90.73 100 −100 −100
(smartphone) which is way more accurate. The WiFi position
system’s accuracy depends on the building’s topology, the number
of access points, and the type of smartphone. Modern Android-
based smartphones can provide accuracy up to 1 m (Retscher,
2020).
WifiRttLocator is an Android-based application that uses WiFi
RTT technology. It allows users to track their position on their
smartphones. We used this platform to get the accurate position
of the patient.
Setting up the configuration for this App takes two steps. 1. Se-
lecting configuration file: It describes the locations of all the WiFi
RTT-capable access points. 2. Importing Overlay file: This file
contains the overlay map of the location. We used the blueprint
of the nuclear medicine department for this purpose. The WifiRt-
tLocator application scans and detects nearby access points and
6

starts tracking indoor navigation. We send this information to
the database, where we compare it with the patient’s position
obtained from the deep learning model.

• Deep Learning Model The deep learning model using the pre-
trained ResNet50 model is employed as a second step verification
tool for more accurately obtaining the patient’s position inside
the nuclear medicine department (NMD). The idea is to track the
patient’s position by getting the image of the patient’s surround-
ings. The image is then sent to the base station, where information
about the patient’s current room (position) is obtained.
The deep learning model ResNet50 is used for image classifica-
tion. It is a conventional neural network (CNN) model that is 16
layers deep. We trained this model for six categories (acceptance
room, waiting room, gallery, injection room, hot waiting room,
and diagnostic room).
We are getting live video streaming from the patient’s mobile

camera. After five seconds, a frame from the video streaming is
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Fig. 4. Loss and accuracies of deep learning model.
Fig. 5. Learning curve for SARSA algorithm.

Table 3
Deep learning model parameters.

Name of parameters Values

Input image size 224,224
Number of training epochs 100
Batch size 32
Training/validation split 0.8/0.2
Seed 123
Pooling avg
Activation function for hidden layer relu
Activation function for output layer softmax
Loss function cross entropy

collected and classified through the ResNet50 classifier. It gives
us the most recent location of the patient.

5.2. Controller

The controller is an intelligent agent empowered with a reinforce-
ment learning algorithm. State–Action–Reward–State–Action (SARSA)
was introduced in Rummery and Niranjan (1994) as a modified version
of Q-learning. Being an online learning method, the agent interacts with
the environment (emulated nuclear medicine department) and updates
policy based on selected action (Sutton & Barto, 1998). The action–
value function 𝑄 is updated by an error and adjusted by the learning
rate 𝑙𝑟 as given in Eq. (7).

𝑄(𝑠 , 𝑎 ) ← 𝑄(𝑠 , 𝑎 ) + 𝑙𝑟[𝑟 + 𝛾𝑄(𝑠 , 𝑎 ) −𝑄(𝑠 , 𝑎 )] (7)
7

𝑡 𝑡 𝑡 𝑡 𝑡+1 𝑡+1 𝑡+1 𝑡 𝑡
The pseudo-code is presented in algorithm 1 where the agent takes
action in the initial state, observes the reward and moves a step onward
where it observe next state and next action. In this stage, the Q-function
is updated, and it continue taking the steps until reaches the final state.
The policy is updated at each episode by taking action with a maximum
Q value. By utilizing the eligibility traces to state–action pairs may
speed up convergence in SARSA. The eligibility traces are updated in
𝑆𝐴𝑅𝑆𝐴(𝜆) as given in Eq. (8).

𝑒𝑡(𝑠, 𝑎) = 𝛾𝜆𝑒𝑡 − 1(𝑠, 𝑎) + 1 if 𝑠 = 𝑠𝑡
and 𝑎 = 𝑎𝑡

𝑒𝑡(𝑠, 𝑎) = 𝛾𝜆𝑒𝑡 − 1(𝑠, 𝑎) otherwise
(8)

And the resulting update rule for the SARSA algorithm by using
trace can be written as given in Eq. (9).

𝑄𝑡+1(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎) + 𝛼𝛿𝑡𝑒𝑡(𝑠, 𝑎) for all 𝑠 ∈ 𝑆 (9)

Convergence in SARSA is guaranteed when all the pairs (state–
action) are observed for an infinite number times (Russell, Norvig,
Canny, Malik, & Edwards, 2003). To consider all states and actions,
we can use 𝜖− greedy policy that randomly chooses the action with
small probability 𝜖 and otherwise takes action with high values as given
in Eq. (10).

𝜋(𝑠) = argmax𝑎𝑄(𝑠, 𝑎) if 𝜎 > 𝜖

𝑎 ≈ 𝐴(𝑠) if 𝜎 ≤ 𝜖
(10)

where 0 ≤ 𝜎 ≤ 1.

6. Experiment

This section first presents an overview of the dataset used during
experiments, then the performance of both tracker and controller, and
an overall discussion on the proposed system’s suitability.

6.1. Dataset

We have collected images from University Hospital Federico-II,
Naples, Italy, to train the DL model. Initially, the dataset contains 500
images of each room captured manually in different orientations and
light conditions. Later, we adopted data augmentation to increase the
dataset, and for that purpose, each image is rotated, shifted, zoomed
in/out, distorted, and shaded with a hue. In the end, we obtained
1000 images for each class/room. We resized images to (224,224) for
the training of the model. We used 80% and 20% ratios for training
and validation, respectively. The training dataset is used to make the
model learn hidden features/patterns in the data. On the other hand,
a validation dataset is used to validate the performance of the trained
model.
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Fig. 6. At each state, actions in green color represent the optimal action, those in red represent the worse actions and optimal path for a patient is represented in thick green
color.
Fig. 7. Demonstration of the proposed system.
There are more than one label class and we expect the label to
be specified as an integer. Thus, we used a sparse categorical cross-
entropy loss function to measure the loss between label and prediction.
All other parameters used for training and testing the Resnet50 model
are shown in the Table 3. Moreover, the total number of parameters
in our Resnet50 model was 24,639,365, from which 1,051,653 were
trainable, and 23,587,712 was non-trainable parameters.
8

6.2. Results

We trained the Resnet50 model on Tesla-K80 GPU by using the
Google-coLAB platform. We used classification accuracy and loss func-
tion as performance metrics for our model. Figs. 4(a) and 4(b) show
accuracy and loss performance for Resnet50 model respectively. The
model has better performance as it has achieved 99 percent accuracy
and a loss of nearly 0.02 on the validation dataset.
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)
Furthermore, RL-model(State–Action–Reward–State–Action (SARSA)
is used to get the appropriate action (guidance message) for the current
detected position (state) of patients. We trained the SARSA model and
the learning curve is shown in Fig. 5. It is evident that the RL agent
is able to learn the dynamics of the NMD in a few iterations. Once the
RL agent (Controller) learned the environment dynamics, it can provide
assistance to the patient through appropriate guidance messages. 𝑉 𝑎𝑙𝑢𝑒
is the maximum expected future reward for action at each state. Table 2
represents the 𝑣𝑎𝑙𝑢𝑒𝑠 of actions at each state. Optimal action is the one
that has the height 𝑣𝑎𝑙𝑢𝑒. For example, at state 𝑠0 two actions (𝑎01,
𝑎02) are possible to select. Action 𝑎01 has the highest 𝑣𝑎𝑙𝑢𝑒 which is
more likely to be selected than action 𝑎02. Similarly, all the best possible
actions at each state are highlighted in green color in Table 2.

For better understanding, we mapped these 𝑣𝑎𝑙𝑢𝑒𝑠 to the layout
of the risk management environment as shown in Fig. 6. The 𝑣𝑎𝑙𝑢𝑒𝑠
of each action in the figure is represented with different color and
thicknesses of the lines from one state to other. Actions with green lines
represent the best action, while those with red lines represent the worst
action in each state. On the other hand, gray lines represent normal
actions (neither best nor worse). An optimal policy {(𝑠0, 𝑎01), (𝑠1, 𝑎13),
(𝑠3, 𝑎36), (𝑠6, 𝑎610), (𝑠10, 𝑎10𝑆𝑠𝑎𝑓𝑒

)} is shown with thick green lines.
Fig. 7 shows the real demonstration of the proposed system. We

discussed few scenarios here. The description related to each result is
given next.

1. The Fig. 7(a) shows the starting interface of the risk management
system. The interface contains the necessary information about
the patient. Some of the information on the interface is technical
(for example, state, and action) and it is used for experimental
purposes. The system suggests the user turn on the smartphone
camera before entering the building.

2. The second image in Fig. 7(b) presents the situation when a
patient is admitted for inspection and waits in the waiting room.
We can see that the position is correctly identified using the
tracker component (WiFi indoor positing system and DL classi-
fier) of the system and then there is a guidance message from
the controller component of the system. The message is that
the patient is in the waiting room and he should move to the
injection room. Where the patient will be injected. After getting
an injection, the patient has to stay in the hot waiting room
until the parameters (blood pressure and heartbeat and body
temperature, etc.) reach the required level. After that patient has
to move to the diagnostic room for further medical inspection.
RMS guides the patient during this process.

3. Next we can visualize in Fig. 7(c) that the detected position by
the tracker (WiFi indoor positing system and DL classifier) is
‘‘diagnostic room’’ and the corresponding guidance message for
the patient is ‘‘You are in the diagnostic room and examination
is undergoing’’.

4. The Fig. 7(d) shows the completion of the process when a
patient gets out of the diagnostic room after a detailed medical
examination.

The demonstration presented in Figs. 7(a) to 7(d) indicates the feasibil-
ity of the proposed system. However, it should be noted that the system
is intended to provide service to normal patients such that a patient
without any visual and audio disabilities. We believe that the proposed
solution can minimize the risk of entering into hazardous situations if
a patient follows the system-generated live guidance.

7. Conclusions

In this paper we have presented a risk management system that
can assist a person in examining a nuclear medicine department with
the aim of supporting and supervising patient’s activities during the
9

examination process at a nuclear medicine department.
The proposed system consists of WiFi indoor positing system and
deep learning method to monitor and verify a patient location and then
used reinforcement learning techniques to guide the patient for safest
path and avoid entering into dangerous states during the examination
process.

The experimental results show that the system is able to get the
appropriate guidance messages for the current detected position of
patients and lead them to a safety examination. The proposed risk
management system not only helps to reduce the risk and injury during
medical examination but also minimize the cost.

In future work, we want to apply the proposed approach to more
complex environments with multiple possible dangerous situations and
investigate the application of both algorithms to deep learning and re-
inforcement learning techniques to address the more complex scenario.
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DL Deep Learning

NMD Nuclear Medicine Department

AI Artificial Intelligence

MDP Markov Decision Process

TD Temporal Difference
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SARSA State–Action–Reward–State–Action

ANN Artificial Neural Network

DNN Deep Neural Network

ML Machine Learning

TD Temporal Difference

MC Monte Carlo

RFID Radio Frequency Identification

RTT Round Trip Time
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